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Consider a plane monochromatic wave incident on a semi-infinite periodic structure. What happens if the
normal component of the transmitted wave group velocity vanishes? At first sight, zero normal component of
the transmitted wave group velocity simply implies total reflection of the incident wave. But we demonstrate
that total reflection is not the only possible outcome. Instead, the transmitted wave can appear in the form of
a frozen mode with very large diverging amplitude and either zero, or purely tangential energy flux. The field
amplitude in the transmitted wave can exceed that of the incident wave by several orders of magnitude. There
are two qualitatively different kinds of frozen mode regime. The first one is associated with a stationary
inflection point of electromagnetic dispersion relation. This phenomenon has been analyzed in our previous
papers. Now, our focus is on the frozen mode regime related to a degenerate photonic band edge. An advantage
of this phenomenon is that it can occur in much simpler periodic structures. This spectacular effect is extremely
sensitive to the frequency and direction of propagation of the incident plane wave. These features can be very
attractive in a variety of practical applications, such as higher harmonic generation and wave mixing, light
amplification and lasing, highly efficient superprizms, etc.
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I. INTRODUCTION

Wave propagation in spatially periodic media, such as
photonic crystals, can be qualitatively different from any uni-
form substance. The differences are particularly pronounced
when the wavelength is comparable to the primitive transla-
tion L of the periodic structure �1–7�. The effects of strong
spatial dispersion culminate when the group velocity u
=�� /�k of a traveling Bloch wave vanishes. One reason for
this is that vanishing group velocity always implies a dra-
matic increase in density of modes at the respective fre-
quency. In addition, vanishing group velocity also implies
certain qualitative changes in the eigenmode structure, which
can be accompanied by some spectacular effects in electro-
magnetic wave propagation. A particular example of the kind
is the frozen mode regime associated with a dramatic en-
hancement of the wave transmitted to the periodic medium
�8–13�. There are at least two qualitatively different modifi-
cations of the frozen mode regime, each related to a specific
singularity of the electromagnetic dispersion relation. Both
effects can be explained using the simple example of a plane
electromagnetic wave normally incident on a lossless semi-
infinite periodic structure, as shown in Fig. 1.

The frozen mode regime of the first kind is associated
with a stationary inflection point on the k-� diagram shown
in Fig. 2�b�. In the vicinity of stationary inflection point, the
relation between the frequency � and the Bloch wave num-
ber k can be approximated as

� − �0 � �k − k0�3. �1�

A monochromatic plane wave of frequency close to �0 inci-
dent on semi-infinite photonic crystal is converted into the
frozen mode with infinitesimal group velocity and dramati-
cally enhanced amplitude, as illustrated in Fig. 3. The satu-
ration value of the frozen mode amplitude diverges as the
frequency approaches its critical value �0. Remarkably, the
photonic crystal reflectivity at �=�0 can be very low, imply-

ing that the incident radiation is almost totally converted into
the frozen mode with zero group velocity, diverging ampli-
tude, and finite energy flux close to that of the incident wave
�9–11�.

A qualitatively different kind of frozen mode regime is
expected in the vicinity of a degenerate photonic band edge
shown in Fig. 2�c�. This case is the main focus of our inves-
tigation. At frequencies just below �d, the dispersion relation
can be approximated as

�d − � � �k − kd�4 at � � �d. �2�

Contrary to the case of stationary inflection point �1�, in the
vicinity of a degenerate band edge the photonic crystal be-
comes totally reflective. But at the same time, the steady-
state field inside the periodic medium �at z�0� develops a
very large amplitude, diverging as the frequency approaches
its critical value �d. Such a behavior is illustrated in Fig. 4.
The frozen mode profile below and above the degenerate
band edge frequency �d is different. It has a large saturation
value at frequencies located inside the transmission band �at
���d�, as seen in Figs. 4�a� and 4�b�. This saturation value
diverges as �→�d−0. By contrast, at frequencies inside the
band gap �at ���d�, the field amplitude initially increases
dramatically with the distance z from the surface, but then
vanishes as the distance z further increases, as seen in Figs.
4�d�–4�f�.

Figures 3 and 4 describe the frozen mode profile in hypo-
thetical lossless semi-infinite periodic media. In the case of a
photonic crystal with finite thickness, the frozen mode profile
remains unchanged in the leftmost portion of the periodic
structure in Fig. 1. In the opposite, rightmost part of the
photonic crystal, the frozen mode amplitude vanishes, as il-
lustrated in Fig. 5. Additional factors limiting the frozen
mode amplitude include structural imperfections of the peri-
odic array, absorption, nonlinearity, deviation of the incident
radiation from plane monochromatic wave, etc. Still, with all
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these limitations in place, the frozen mode regime can be
very strong.

Not every periodic structure can support the frozen mode
regime at normal incidence. Generally, the physical condi-
tions for the frozen mode regime are the same as the condi-
tions for the existence of the respective stationary point �1�
or �2� of the dispersion relation. In either case, a unit cell of
the periodic layered structure must contain at least three lay-
ers, of which two must display a misaligned in-plane aniso-
tropy, as shown in Fig. 6. The difference, though, is that a
stationary inflection point �1� also required the presence of
magnetic layers with strong nonreciprocal circular birefrin-
gence �8,9�. No magnetic layers are needed for a degenerate
band edge �2�, which constitutes a major practical advantage
of the respective frozen mode regime. In photonic crystals
with three dimensional periodicity, the presence of aniso-
tropic constitutive component may not be necessary. A de-
tailed comparative analysis of the above two modifications
of the frozen mode regime at normal incidence is carried out
in the next section. The emphasis is on the physical condi-
tions under which these phenomena can occur.

In Sec. III, we turn to the case of oblique wave propaga-
tion. The frozen mode regime at oblique incidence can occur
when the normal component of the transmitted wave group
velocity vanishes, while its tangential component remains
finite. In such a case, the transmitted wave is an abnormal
grazing mode with a dramatically enhanced amplitude and
nearly tangential energy flux. A significant advantage of the
oblique modification of the frozen mode regime is that it can
occur in much simpler periodic structures, compared to those

supporting the frozen mode regime at normal incidence. Ex-
amples are shown in Figs. 7 and 8. The presence of aniso-
tropic layers is still required.

Yet another interesting modification of the frozen mode
regime are abnormal subsurface wave. Such waves can exist

FIG. 1. �Color online� Plane wave normally incident on a semi-
infinite photonic crystal. The subscripts I, R, and T refer to the
incident, reflected and transmitted waves, respectively. In all cases,
the amplitude of the incident wave is unity.

FIG. 2. �Color online� Schematic examples of dispersion rela-
tions displaying different stationary points: �a� a regular band edge
�RBE�, �b� a stationary inflection point �SIP�, �c� a degenerate band
edge �DBE�.

FIG. 3. �Color online� Smoothed profile of the frozen mode at
six different frequencies in the vicinity of stationary inflection
point: �a� �=�0−10−4c /L, �b� �=�0−10−5c /L, �c� �=�0, �d� �
=�0+10−5c /L, �e� �=�0+10−4c /L, �f� �=�0+10−3c /L. In all
cases, the incident wave has the same polarization and unity ampli-
tude. The distance z from the surface of semi-infinite photonic crys-
tal is expressed in units of L. Physical parameters of the periodic
structure are specified in �78� and �79�.

FIG. 4. �Color online� Smoothed profile of the frozen mode at
six different frequencies in the vicinity of degenerate band edge: �a�
�=�d−10−4c /L, �b� �=�d−10−6c /L, �c� �=�d, �d� �=�d

+10−6c /L, �e� �=�d+10−5c /L, �f� �=�d+10−4c /L. In the trans-
mission band �at ���d�, the asymptotic field value diverges as �
→�d. By contrast, in the band gap �at ���d�, the asymptotic field
value is zero. The amplitude of the incident wave at z�0 is unity.
The distance z from the surface is expressed in units of L. Physical
parameters of the periodic structure used in computations are speci-
fied in Sec. V.
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at band gap frequencies close to a degenerate photonic band
edge. Regular surface waves usually decay exponentially
with the distance from the surface in either direction. By
contrast, abnormal subsurface waves are extremely asym-
metric. They do decay rapidly outside the photonic crystal.
But inside the periodic medium, their amplitude sharply in-
creases, and reaches its maximum at a certain distance from
the surface. Only after that the field amplitude begins a slow
decay, as the distance from the surface further increases. The
profile of a subsurface wave is similar to that of the frozen
mode above the degenerate band edge in Figs. 4�d�–4�f�.
This phenomenon is briefly discussed in Sec. IV.

In Sec. V we discuss the physical requirements to the
spatially periodic arrays capable of supporting the frozen
mode regime, both at normal and oblique incidence. We also
present a detailed description of the periodic layered struc-
tures used in our numerical simulations.

Finally, in Sec. VI we summarize the results and discuss
some physical limitations of the frozen mode regime.

II. THE PHYSICAL NATURE OF THE FROZEN
MODE REGIME

The essence of the frozen mode regime can be understood
from the simple example of a plane monochromatic wave
normally incident on a semi-infinite periodic layered struc-
ture, as shown in Fig. 1. An important requirement, though,
is that some of the layers display a misaligned in-plane an-
isotropy as shown in the example in Fig. 6. Below we
present a comparative analysis of two different kinds of fro-
zen mode regime. Although throughout this section we only
consider the case of normal incidence, in the next section we
will show that most of the results and expressions remain
virtually unchanged in a more general case of the frozen
mode regime at oblique propagation. One difference, though,
is that at oblique incidence, the frozen mode regime can
occur in much simpler structures. This can have a big advan-
tage in practical terms.

To start with, let us introduce some basic notations and
definitions. Let �I, �R, and �T be the incident, reflected and
transmitted waves, respectively. Assume for now that all
three monochromatic waves propagate along the z axis nor-
mal to the surface of semi-infinite periodic layered structure
in Fig. 1. Electromagnetic field both inside �at z�0� and

FIG. 5. �Color online� Smoothed profile of the frozen mode in
periodic layered structures composed of different number N of unit
cells L. The frequency is equal to that of the degenerate band edge.
The initial rate of growth of the frozen mode amplitude is virtually
independent of N and described by �34�. The limiting case �d� of the
semi-infinite structure is also shown in Fig. 4�c�. In all cases, the
incident wave has the same polarization and unity amplitude. The
distance z from the surface is expressed in units of L.

FIG. 6. �Color online� Periodic stack capable of supporting
k−� diagram with a DBE. A unit cell L includes three layers: two
birefringent layers A1 and A2 with misaligned in-plane anisotropy,
and one isotropic B layer. In order to support a DBE, the misalign-
ment angle � between adjacent anisotropic layers A1 and A2 must
be different from 0 and � /2. A detailed description of this periodic
structure is given in Sec. V.

FIG. 7. �Color online� Periodic layered structure with two layers
A and B in a primitive cell L. The A layers �hatched� are anisotropic
with one of the principle axes of the dielectric permittivity tensor
making an oblique angle with the normal z to the layers �	xz�0�.
The B layers are isotropic. The x-z plane coincides with the mirror
plane of the stack. This structure can support axial dispersion rela-
tion ��kz� with stationary inflection point �44�, provided that
kx ,ky�0.

FIG. 8. �Color online� Periodic layered structure with two layers
A and B in a unit cell L. The A layer has inplane anisotropy �76�,
while the B layer can be isotropic. This stack can display axial
dispersion relation ��kz� with a degenerate band edge �45�, pro-
vided that kx ,ky�0.
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outside �at z�0� the periodic stack is independent of the x
and y coordinates. The transverse field components can be
represented as a column vector

��z� = �
Ex�z�
Ey�z�
Hx�z�
Hy�z�

� , �3�

where E� �z� and H� �z� are time-harmonic electric and mag-
netic fields. All four transverse field components in �3� are
continuous functions of z, which leads to the following stan-
dard boundary condition at z=0:

�T�0� = �I�0� + �R�0� . �4�

Assume also that anisotropic layers of the periodic array
have an in-plane anisotropy �69�, in which case the fields

E� �z� and H� �z� are normal to the direction of propagation

E� �z� � z, H� �z� � z , �5�

and the column vector �3� includes all nonzero field compo-
nents. Note that the polarizations of the incident, reflected
and transmitted waves can be different, because some of the
layers of the periodic array display an in-plane anisotropy, as
shown in the example in Fig. 6. The presence of anisotropic
layers is essential for the possibility of frozen mode regime.

In periodic layered media, the electromagnetic eigen-
modes �k�z� are usually chosen in the Bloch form

�k�z + L� = eikL�k�z� , �6�

where the Bloch wave number k is defined up to a multiple
of 2� /L. The correspondence between � and k is referred to
as the Bloch dispersion relation. Real k correspond to propa-
gating �traveling� Bloch modes. Propagating modes belong
to different spectral branches ��k� separated by frequency
gaps. The speed of a traveling wave in a periodic medium is
determined by the group velocity �4�

u = d�/dk . �7�

Normally, each spectral branch ��k� develops stationary
points �s=��ks� where the group velocity �7� of the corre-
sponding propagating mode vanishes

d�/dk = 0 at � = �s = ��ks� . �8�

Examples of different stationary points are shown in Fig. 2,
where each of the frequencies �g, �0, and �d is associated
with zero group velocity of the respective traveling wave.
Stationary points �7� play essential role in the formation of
frozen mode regime.

By contrast, evanescent Bloch modes are characterized by
complex wave numbers k=k�+ ik�. Evanescent modes decay
exponentially with the distance z from the boundary of semi-
infinite periodic structure. Therefore, under normal circum-
stances, evanescent contribution to the transmitted wave
�T�z� can be significant only in close proximity of the sur-
face. The situation can change dramatically when the fre-
quency � approaches one of the stationary point values �s.
At first sight, stationary points �8� relate only to propagating

Bloch modes. But in fact, in the vicinity of every stationary
point frequency �s, the imaginary part k� of the Bloch wave
number of at least one of the evanescent modes also van-
ishes. As a consequence, the respective evanescent mode de-
cays very slowly, and its role may extend far beyond the
photonic crystal boundary. In addition, in the special cases of
interest, the electromagnetic field distribution ��z� in the
coexisting evanescent and propagating eigenmodes becomes
very similar, as � approaches �s. This can result in spectacu-
lar resonance effects, such as the frozen mode regime. What
exactly happens in the vicinity of a particular stationary point
�8� essentially depends on its character and appears to be
very different in each of the three cases presented in Fig. 2.

In the next section we present a simple qualitative picture
of the frozen mode regime based solely on energy conserva-
tion consideration. This will allow us to highlight the differ-
ence between the cases of stationary inflection point �1� and
degenerate band edge �2�. Then, we discuss the physical na-
ture of the frozen mode regime.

A. Energy density and energy flux at frozen mode regime

Let SI, SR, and ST be the energy flux in the incident, re-
flected and transmitted waves in Fig. 1. The transmission and
reflection coefficients of a lossless semi-infinite medium are
defined as


 =
ST

SI
, � = −

SR

SI
, �9�

where

SI + SR = ST, � = 1 − 
 .

With certain reservations, the energy flux ST of the transmit-
ted traveling wave can be expressed as

ST = WTu , �10�

where u is the group velocity, which is also the energy
velocity, and WT is the energy density

WT � ��T�2.

Evanescent modes do not contribute to the normal energy
flux ST in the case of a lossless semi-infinite periodic struc-
ture. Besides, evanescent contribution to the transmitted
wave becomes negligible at a certain distance z from the
surface. The simple expression �10� may not apply when the
transmitted wave involves two or more propagating Bloch
modes, but we will not deal with such a situation here.

Vanishing group velocity u in �10� implies that the trans-
mitted wave energy flux ST also vanishes, along with the
respective transmission coefficient 
 in �9�. The only excep-
tion could be if the energy density WT of the transmitted
wave increases dramatically in the vicinity of the stationary
point frequency. In other words, if WT in �10� grows fast
enough, as � approaches �s, the product WTu in �10� can
remain finite even at �=�s. In such a case, a significant
fraction of the incident radiation can be converted into the
slow mode inside the semi-infinite periodic array. The effect
of a dramatic growth of the transmitted wave amplitude in
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the vicinity of a stationary point �8� will be referred to as the
frozen mode regime. The possibility of such an effect is di-
rectly related to the character of a particular stationary point.
From this point of view, let us consider three different situ-
ation presented in Fig. 2.

1. Regular band edge

We start with the simplest case of a regular photonic band
edge �RBE� in Fig. 2�a�. It can be found in any periodic
array, including any periodic layered structure. Just below
the band edge frequency �g, the dispersion relation can be
approximated by a quadratic parabola

�g − � � �k − kg�2 at � � �g. �11�

This yields the following frequency dependence of the
propagating mode group velocity u inside the transmission
band

u =
d�

dk
� �kg − k� � ��g − ��1/2 at � � �g. �12�

Due to the boundary condition �4�, the amplitude of the
transmitted propagating Bloch mode remains finite and com-
parable to that of the incident wave. Therefore, the energy
flux �10� associated with the transmitted slow mode van-
ishes, as � approaches �g,

ST = WTu � ���g − ��1/2 at � � �g,

0 at � � �g.
	 �13�

Formula �13� expresses the well-known fact that in the vi-
cinity of a regular photonic band edge, a lossless semi-
infinite photonic crystal becomes totally reflective.

2. Stationary inflection point

A completely different situation occurs in the vicinity of a
stationary inflection point in Fig. 2�b�. At normal propaga-
tion, such a point can be found in periodic layered structures
involving anisotropic and magnetic layers �8,9�, as well as in
some photonic crystals with two- and three-dimensional pe-
riodicity. In the vicinity of a stationary inflection point �0,
the dispersion relation can be approximated by a cubic pa-
rabola �1�. The propagating mode group velocity u vanishes
as � approaches �0 from either direction

u =
d�

dk
� �k − k0�2 � �� − �0�2/3. �14�

But remarkably, the amplitude of the transmitted propagating
mode increases so that the respective energy density WT di-
verges as �→�0,

WT � �� − �0�−2/3. �15�

The expression �14� together with �15� yield that the energy
flux of the transmitted slow mode remains finite even at �
=�0,

ST = WTu 
 SI at � � �0. �16�

The latter implies that the incident light is converted to the
frozen mode with infinitesimal group velocity �14� and di-

verging amplitude �15�. This result was first reported in Ref.
�9�. A consistent analytical description of the asymptotic be-
havior of the transmitted field amplitude in the vicinity of a
stationary inflection point was carried out in Ref. �13�.

3. Degenerate band edge

Let us turn to the case of a degenerate band edge in Fig.
2�c�. At normal propagation, such a point can be found in
dispersion relation of periodic layered structures with mis-
aligned anisotropic layers. An example is shown in Fig. 6.
Just below the degenerate band edge frequency �d, the dis-
persion relation ��k� can be approximated by a biquadratic
parabola �2�. This yields the following frequency dependence
of the propagating mode group velocity inside the transmis-
sion band:

u =
d�

dk
� �kd − k�3 � ��d − ��3/4 at � � �d. �17�

Analysis shows that the amplitude of the transmitted slow
mode in this case diverges, as the frequency approaches the
band edge value,

WT � ��d − ��−1/2 at � � �DBE, �18�

which constitutes the frozen mode regime. But the energy
density �18� does not grow fast enough to offset the vanish-
ing group velocity �17�. The expressions �17� and �18� to-
gether with �10� yield for the energy flux

ST = WTu � ���d − ��1/4 at � � �d,

0 at � � �d,
	 �19�

implying that, in spite of the diverging energy density �18�,
the energy flux of the transmitted slow wave vanishes, as �
approaches �d.

The situation at a degenerate band edge �2� can be viewed
as intermediate between the frozen mode regime at a station-
ary inflection point �1�, and the vicinity of a regular band
edge �11�. Indeed, on the one hand, the incident wave at �
=�d is totally reflected back to space, as is the case at a
regular band edge. On the other hand, the transmitted field
amplitude inside the periodic medium diverges as �→�d,
which is similar to what occurs at a stationary inflection
point.

The above consideration does not explain the nature of
the frozen mode regime, nor does it address the problem of
the Bloch composition of the frozen mode. These questions
are the subject of the next section.

B. Bloch composition of frozen mode

In a periodic layered structure, at any given frequency �,
there are four electromagnetic eigenmodes with different po-
larizations and wave numbers. But in the setting of Fig. 1,
where the semi-infinite periodic array occupies the half-
space z�0, the transmitted wave is a superposition of only
two of the four Bloch eigenmodes. Indeed, neither the propa-
gating modes with negative group velocity, nor evanescent
modes exponentially growing with the distance z from the
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surface, contribute to �T�z� in this case. Generally, one can
distinguish three different possibilities.

�i� Both Bloch components of the transmitted wave �T
are propagating modes

�T�z� = �pr1�z� + �pr2�z�, z � 0. �20�

�pr1�z� and �pr2�z� are two propagating Bloch modes with
different real wave numbers k1 and k2 and different group
velocities u1�0 and u2�0. This constitutes the phenom-
enon of double refraction, provided that u1 and u2 are
different. The other two Bloch components of the same
frequency have negative group velocities and cannot con-
tribute to the transmitted wave �T.

�ii� Both Bloch components of �T are evanescent

�T�z� = �ev1�z� + �ev2�z�, z � 0. �21�

The respective two values of k are complex with positive
imaginary parts k��0. This is the case when the frequency
� falls into photonic band gap at ���g in Fig. 2�a� or at
���d in Fig. 2�c�. The fact that k��0 implies that the wave
amplitude decays with the distance z from the surface. In the
case �21�, the incident wave is totally reflected back to space
by the semi-infinite periodic structure.

�iii� One of the Bloch components of the transmitted
wave �T is a propagating mode with u�0, while the other is
an evanescent mode with k��0,

�T�z� = �pr�z� + �ev�z�, z � 0. �22�

For example, this is the case at �
�0 in Fig. 2�b�, as well as
at ���g in Fig. 2�a� and at ���d in Fig. 2�c�. As the
distance z from the surface increases, the evanescent contri-
bution �ev in �22� decays as exp�−zk��, and the resulting
transmitted wave �T�z� turns into a single propagating
Bloch mode �pr.

Propagating modes with u�0 and evanescent modes with
k��0 are referred to as forward waves. Only forward modes
contribute to the transmitted wave �T�z� in the case of a
periodic semi-infinite stack. The propagating modes with u
�0 and evanescent modes with k��0 are referred to as
backward waves. The backward waves never contribute to
the transmitted wave �T inside the periodic semi-infinite
stack in Fig. 1. This statement is based on the following two
assumptions:

�i� The transmitted wave �T and the reflected wave �R
are originated from the plane wave �I incident on the semi-
infinite photonic slab from the left, as shown in Fig. 1.

�ii� The layered array in Fig. 1 occupies the entire half-
space and is perfectly periodic at z�0.

If either of the above conditions is violated, the electro-
magnetic field inside the periodic stack can be a superposi-
tion of four Bloch eigenmodes with either sign of the group
velocity u of propagating contributions, or either sign of k�
of evanescent contributions. This would be the case if the
periodic layered array in Fig. 1 had some kind of structural
defects or a finite thickness. At the end of this section we
briefly discuss how it would affect the frozen mode regime.

Note also that the assumption that the transmitted wave
�T�z� is a superposition of propagating and/or evanescent
Bloch eigenmodes may not apply if the frequency � exactly
coincides with one of the stationary point frequencies �8�.
For example, at frequency �0 of stationary inflection point
�1�, there are no evanescent solutions to the Maxwell equa-
tions �54�, and the transmitted wave �T�z� is a �non-Bloch�
Floquet eigenmode linearly growing with z �9,10�. Similar
situation occurs at frequency �d of degenerate band edge �2�.
The term “non-Bloch” means that the respective field distri-
bution does not comply with the relation �6�. At the same
time, at any general frequency, including the vicinity of any
stationary point �8�, the transmitted wave �T�z� is a super-
position of two Bloch eigenmodes, each of which is either
propagating, or evanescent.

In all three cases �20�–�22�, the contribution of a particu-
lar Bloch eigenmode to the transmitted wave �T depends on
the polarization �I of the incident wave. One can always
choose some special incident wave polarization, such that
only one of the two forward Bloch modes is excited and the
transmitted wave �T is a single Bloch eigenmode. In the
next section we will see that there is no frozen mode regime
in the case of a single mode excitation. This fact relates to
the very nature of the frozen mode regime.

Knowing the Bloch composition of the transmitted wave
we can give a semiqualitative description of what happens
when the frequency � of the incident wave approaches one
of the stationary points �8� in Fig. 2. More consistent analy-
sis based on the Maxwell equations is outlined in Sec. IV.

1. Regular photonic band edge

We start with the simplest case of a regular photonic band
edge. There are two different possibilities in this case, but
none of them is associated with the frozen mode regime. The
first one relates to the trivial case where none of the layers of
the periodic structure displays an in-plane anisotropy or gy-
rotropy. As the result, all eigenmodes are doubly degenerate
with respect to polarization. A detailed description of this
case can be found in the extensive literature on optics of
stratified media �2,3�. Slightly different scenario occurs if
some of the layers are anisotropic or gyrotropic and, as a
result, the polarization degeneracy is lifted. Just below the
band edge frequency �g in Fig. 2�a�, the transmitted field
�T�z� is a superposition �22� of one propagating and one
evanescent Bloch modes. Due to the boundary condition �4�,
the amplitude of the transmitted wave at z=0 is comparable
to that of the incident wave. In the case of a generic polar-
ization of the incident light, the amplitudes of the propagat-
ing and evanescent Bloch components at z=0 are also com-
parable to each other and to the amplitude of the incident
light

��pr�0�� 
 ��ev�0�� 
 ��I� at � � �g. �23�

As the distance z from the surface increases, the evanescent
component �ev�z� decays rapidly, while the amplitude of the
propagating component remains constant. Eventually, at a
certain distance from the slab surface, the transmitted wave
�T�z� becomes very close to the propagating mode
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�T�z� � �pr�z� at z  L, � � �g. �24�

The evanescent component �ev of the transmitted wave
does not display any singularity at the band edge frequency
�g. The propagating mode �pr does develop a singularity
associated with vanishing group velocity at �→�g−0, but
its amplitude remains finite and comparable to that of the
incident wave. At ���g, this propagating mode turns into
another evanescent mode in �21�. The bottom line is that
none of the Bloch components of the transmitted wave de-
velops a large amplitude in the vicinity of a regular photonic
band edge. There is no frozen mode regime in this trivial
case.

2. Stationary inflection point

A completely different situation develops in the vicinity
of a stationary inflection point �1� of the dispersion relation.
At ���0, the transmitted wave �T is a superposition �22� of
one propagating and one evanescent Bloch component. In
contrast to the case of a regular photonic band edge, in the
vicinity of �0 both Bloch contributions to �T develop strong
singularity. Specifically, as the frequency � approaches �0,
both contributions grow dramatically, while remaining nearly
equal and opposite in sign at the slab boundary �9�,

�pr�0� � − �ev�0� � �� − �0�−1/3 as � → �0. �25�

Due to the destructive interference �25�, the resulting field

�T�0� = �pr�0� + �ev�0�

at the surface at z=0 is small enough to satisfy the boundary
condition �4�. As the distance z from the slab boundary in-
creases, the destructive interference becomes less
effective—in part because the evanescent contribution de-
cays exponentially

�ev�z� � �ev�0�exp�− zk�� , �26�

while the amplitude of the propagating contribution remains
constant and very large. Eventually, the transmitted wave
�T�z� reaches its large saturation value corresponding to its
propagating component �pr, as seen in Fig. 9�a�.

Note that the imaginary part k� of the evanescent mode
wave number in �26� also vanishes in the vicinity of station-
ary inflection point,

k� � �� − �0�1/3 as � → �0, �27�

reducing the rate of decay of the evanescent contribution
�26�. As a consequence, the resulting amplitude �T�z� of the
transmitted wave reaches its large saturation value �pr in
�25� only at a certain distance Z from the surface

Z � 1/k� � �� − �0�−1/3. �28�

This characteristic distance diverges as the frequency ap-
proaches its critical value �0.

If the frequency of the incident wave is exactly equal to
the frozen mode frequency �0, the transmitted wave �T�z�
does not reduce to the sum �22� of propagating and evanes-
cent contributions, because at �=�0, there is no evanescent
solutions to the Maxwell equations �54�. Instead, �T�z� cor-
responds to a non-Bloch Floquet eigenmode diverging lin-
early with z �9�.

�T�z� − �T�0� � z�0 at � = �0. �29�

Such a solution is shown in Fig. 3�c�.

3. Degenerate band edge

While the situation with a regular photonic band edge �11�
appears trivial, the case of a degenerate band edge �2� proves
to be quite different. Just below the degenerate band edge
frequency �d �inside the transmission band�, the transmitted
field is a superposition �22� of one propagating and one eva-
nescent components. Above �d �inside the band gap�, the
transmitted wave is a combination �21� of two evanescent
components. In this respect, a regular and a degenerate band
edges are similar to each other. A crucial difference, though,
is that in the vicinity of a degenerate band edge, both Bloch
contributions to the transmitted wave diverge as � ap-
proaches �d, both above and below the band edge frequency.
This constitutes the frozen mode regime.

Let us start with the transmission band. As the frequency
� approaches �d−0, both Bloch contributions in �22� grow
sharply, while remaining nearly equal and opposite in sign at
the surface

�pr�0� � − �ev�0� � ��d − ��−1/4 as � → �d − 0.

�30�

This asymptotic formula was obtained in Ref. �13� using the
perturbation theory for the 4�4 transfer matrix �67�. The
destructive interference �30� ensures that the boundary con-
dition �4� can be satisfied, while both Bloch contributions to
�T�z� diverge. As the distance z from the slab boundary
increases, the evanescent component �ev�z� dies out

�ev�z� � �ev�0�exp�− zk�� �31�

while the propagating component �pr�z� remains constant
and very large. Eventually, as the distance z further increases,
the transmitted wave �T�z� reaches its large saturation value
corresponding to its propagating component �pr�z�, as illus-

FIG. 9. �Color online� Destructive interference of the propagat-
ing and evanescent components of the transmitted wave inside
semi-infinite photonic crystal. The frequency is close but not equal
to that of stationary inflection point. �a� The squared modulus of the
resulting transmitted field—its amplitude at z=0 is small enough to
satisfy the boundary conditions �4�; �b� the squared modulus of the
propagating contribution, which is independent of z; �c� the squared
modulus of the evanescent contribution, which decays with the dis-
tance z. The amplitude of the incident wave is unity. The distance z
from the surface is expressed in units of L.
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trated in Fig. 10. Note that the imaginary part k� of the eva-
nescent mode wave number also vanishes in the vicinity of
degenerate band edge,

k� � �� − �d�1/4 as � → �d, �32�

reducing the rate of decay of the evanescent contribution
�31�. As a consequence, the resulting amplitude �T�z� of the
transmitted wave reaches its large saturation value �pr only
at a certain distance Z from the surface,

Z � 1/k� � �� − �d�−1/4. �33�

This characteristic distance increases as the frequency ap-
proaches its critical value �d, as illustrated in Figs. 4�a� and
4�b�.

If the frequency � of the incident wave is exactly equal to
�d, the transmitted wave �T�z� does not reduce to the sum of
two Bloch contributions. Instead, it corresponds to a non-
Bloch Floquet eigenmode linearly diverging with z,

�T�z� − �T�0� � z�d at � = �d. �34�

This situation is shown in Fig. 4�c�.
The above behavior appears to be very similar to that of

the frozen mode regime at a stationary inflection point,
shown in Figs. 3 and 9. Yet, there is a crucial difference
between the frozen mode regime at a stationary inflection
point and at a degenerate band edge. According to �19�, in
the immediate proximity of a degenerate band edge, the
Pointing vector ST of the transmitted wave is infinitesimal, in
spite of the diverging wave amplitude �30�. In other words,
although the energy density WT� ��T�2 of the frozen mode
diverges as �→�d−0, it does not grow fast enough to offset
the vanishing group velocity �17�. As a consequence, the
photonic crystal becomes totally reflective at �=�d. Of
course, the total reflectivity persists at ���d, where there is
no propagating modes at all. By contrast, in the case �29� of
a stationary inflection point, the respective Pointing vector ST
is finite and can be even close to that of the incident wave,
implying low reflectivity and nearly total conversion of the
incident wave energy into the frozen mode.

The character of frozen mode regime is different when we
approach the degenerate band edge frequency from the band
gap. In such a case, the transmitted field �T�z� is a superpo-
sition �21� of two evanescent components. As the frequency
� approaches �d, both evanescent contributions grow
sharply, while remaining nearly equal and opposite in sign at
the photonic crystal boundary,

�ev1�0� � − �ev2�0� � ��d − ��−1/4 as � → �d + 0.

�35�

This asymptotic formula also was derived using the pertur-
bation theory for the 4�4 transfer matrix �67�. Again, the
destructive interference �35� ensures that the boundary con-
dition �4� is satisfied, while both evanescent contributions to
�T�z� diverge in accordance with �35�. As the distance z
from the slab boundary increases, the destructive interference
of these two evanescent components is lifted and the result-
ing field amplitude increases sharply, as seen in Fig. 11�a�.
But eventually, as the distance z further increases, the trans-
mitted wave �T�z� completely decays, because both Bloch
contributions to �T�z� are evanescent. The latter constitutes
the major difference between the frozen mode regime above
and below the DBE frequency �d. The rate of the amplitude
decay, as well as the position of the maximum of the trans-
mitted wave amplitude in Figs. 4�d�–4�f� and 11�a�, are char-
acterized by the distance Z in �33�.

4. Physical reason for the growing wave amplitude

If the frequency � is close, but not equal, to that of a
stationary point �8� of the dispersion relation, the wave �T�z�
transmitted to the semi-infinite periodic layered medium is a
superposition of two forward Bloch modes �1�z� and �2�z�,

�T�z� = �1�z� + �2�z� . �36�

The two Bloch modes in �36� can be a propagating and an
evanescent, as in �22�, or they can be both evanescent, as in
�21�. In the vicinity of frozen mode regime, as the frequency
approaches its critical value ��0 or �d�, the two Bloch eigen-
modes contributing to �T�z� become nearly indistinguishable
from each other

FIG. 10. �Color online� Destructive interference of the two
Bloch components of the transmitted wave inside semi-infinite pho-
tonic crystal. The frequency is �=�d−10−4c /L, which is slightly
below the degenerate band edge in Fig. 15�b�. �a� The squared
modulus of the resulting transmitted field—its amplitude at z=0 is
small enough to satisfy the boundary conditions �4�; �b� the squared
modulus of the propagating contribution, which is independent of z;
�c� the squared modulus of the evanescent contribution, which de-
cays with the distance z. The amplitude of the incident wave is
unity. Similar graphs related to the stationary inflection point are
shown in Fig. 9.

FIG. 11. �Color online� Destructive interference of the two
Bloch components of the transmitted wave inside semi-infinite pho-
tonic crystal. The frequency is �=�d+10−5c /L, which is just above
the degenerate band edge in Fig. 15�b�. �a� The squared modulus of
the resulting transmitted field—its amplitude at z=0 is small
enough to satisfy the boundary conditions �4�; �b� and �c� the
squared moduli of the two evanescent contributions; both decay
with the distance z. The amplitude of the incident wave is unity.
Similar graphs related to the frequency just below DBE in Fig.
15�b� are shown in Fig. 10.
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�1�z� � ��2�z� as � → �s, �37�

where � is a scalar, and �s is the frozen mode frequency ��0
or �d�. The asymptotic relation �37� reflects a basic property
of the transfer matrix �61� of periodic layered structures at
frequency of either a stationary inflection point, or a degen-
erate band edge. A rigorous analysis based on the perturba-
tion theory and leading to �37� is carried out in Ref. �13�. For
more on this see Sec. IV.

Let us show under what circumstances the property �37�
can lead to the frozen mode regime. The sum �36� of two
nearly parallel column vectors �1 and �2 must match the
boundary conditions �4� with the incident and reflected
waves. If the incident wave polarization is general, then the
nearly parallel Bloch components �1 and �2 must be very
large and nearly equal and opposite

�1�0� � − �2�0�, ��1�0�� � ��2�0��  ��I� , �38�

in order to satisfy the boundary conditions �4�. Indeed, since
the incident field polarization is general, we have no reason
to expect that the column vector ��0� at the surface is nearly
parallel to �1�0� and �2�0�. But on the other hand, the
boundary conditions say that

��0� = �1�0� + �2�0� . �39�

Obviously, the only situation where the sum �39� of two
nearly parallel vectors can be not nearly parallel to either of
them is the one described in �38�.

There is one exception, though. As we already stated in
�37�, in the vicinity of the frozen mode frequency, the two
Bloch components �1 and �2 of the transmitted wave are
nearly parallel to each other. For this reason, if the polariza-
tion of the incident wave �I is such that ��0� in �39� is
nearly parallel to one of the Bloch eigenmodes �1�0� or
�2�0�, it is also nearly parallel to the other one. So, all three
column vectors �1�0�, �2�0�, and ��0� are now parallel to
each other. In this, and only this case, the amplitude of the
transmitted wave �T�z� will be comparable to that of the
incident wave. There is no frozen mode regime for the re-
spective vanishingly small range of the incident wave polar-
ization. A particular case of the above situation is a regime of
a single mode excitation, where only one of the two Bloch
components �1 or �2 in �36� contributes to the transmitted
wave.

Finally, let us reiterate that in the limiting cases of
�=�0 or �=�d, the transmitted wave �T�z� corresponds to
the non-Bloch Floquet eigenmode �29� or �34�, respectively.
Either of them linearly diverges with z. Again, the only ex-
ception is when the incident wave has the unique polariza-
tion, at which the transmitted wave �T�z� is a propagating
Bloch eigenmode with zero group velocity and a limited am-
plitude, comparable to that of the incident wave. Incident
wave with any other polarization will generate the frozen
mode inside the periodic medium.

C. Frozen mode regime in bounded photonic crystals

The above consideration was based on the assumption
that the transmitted wave is a superposition of only forward

waves, which include propagating modes with u�0 and/or
evanescent modes with k��0. This assumption, reflected in
�20�–�22�, does not apply to bounded photonic crystals,
where the periodic medium does not occupy the entire half-
space z�0. If the periodic layered array in Fig. 1 has a finite
thickness, the electromagnetic field inside the periodic stack
is a superposition of all four Bloch eigenmodes with either
sign of the group velocity u of propagating contributions,
and/or either sign of k� of evanescent contributions. How
does a finite thickness affect the frozen mode regime? In Fig.
5, we depicted the frozen mode profile in periodic stacks
composed of different number N of identical unit cells L in
Fig. 6. The total thickness of the respective photonic slab is
equal to NL. In all cases, the incident wave frequency �
coincides with that of the degenerate band edge �d in �11�.
The presence of the second �right-hand� boundary of the pe-
riodic array gives rise to the backward wave contribution to
�T�z�. Comparison of Figs. 5�a�–5�c� to the semi-infinite
case in Fig. 5�d� shows that the backward wave contribution
to the formation of the frozen mode profile becomes signifi-
cant only at a certain distance from the surface of incidence
at z=0. Specifically, the backward wave contribution elimi-
nates the frozen mode in the right-hand portion of the finite
photonic slab, while having no impact in its left-hand portion
at 0�z�NL. Similar situation occurs at the frozen mode
regime associated with stationary inflection point �1�. Impor-
tantly, the frozen mode profile near the surface of incidence
is not affected by the finite dimensions of the photonic crys-
tal.

In addition to the modification of the frozen mode profile,
the bounded photonic crystals can display strong Fabry-Perot
cavity resonances, also known as transmission band edge
resonances. The respective resonance frequencies are located
strictly inside the transmission band �see, for example, Ref.
�14�, and references therein�. Cavity resonances are distinct
from the frozen mode regime and go outside the scope of our
investigation.

III. FROZEN MODE REGIME AT OBLIQUE
PROPAGATION—ABNORMAL GRAZING MODES

A phenomenon similar to the frozen mode regime can
also occur at oblique wave propagation, where the incident,
reflected and transmitted waves are all propagate at an angle
to the z axis, as shown in Fig. 12. Consider the situation
where the normal component uz of the group velocity of the
transmitted propagating wave vanishes, while the tangential
component u�� remains finite,

uz =
��

�kz
= 0, u�� =

��

�k��

� 0 at � = �s = ��k�s� . �40�

This is exactly what happens in the vicinity of the well-
known phenomenon of total internal reflection �6�. Similar
effect occurs in any photonic crystal at frequency corre-
sponding to the transmission band edge for a particular di-
rection of incidence. Remarkably, the total reflection of the
incident wave is not the only possible outcome. Another al-
ternative is that the transmitted wave forms an abnormal
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grazing mode with dramatically enhanced amplitude and tan-
gential energy flux. The profile of such a grazing mode, i.e.,
the field dependence on the distance z from the surface, ap-
pears to be very similar to that of the frozen mode at normal
incidence shown in Figs. 3 and 4. The only difference is that
the tangential component of the transmitted wave group ve-
locity now remains finite and can even be comparable to the
speed of light in vacuum.

A significant advantage of the oblique version of the fro-
zen mode regime is that it can occur in much simpler peri-
odic structures, compared to those supporting the frozen
mode regime at normal incidence. Examples of periodic lay-
ered arrays supporting only the oblique version of the frozen
mode regime are shown in Figs. 7 and 8. These structures are
too simple to support any kind of frozen mode regime at
normal incidence—they have only two different layers in a
unit cell L, of which only one layer is anisotropic. But at
oblique incidence, these relatively simple periodic arrays can
support the frozen mode regime. The presence of at least one
anisotropic layer in a unit cell L is still required. The physi-
cal requirements to periodic structures capable of supporting
both normal and oblique versions of the frozen mode regime
are discussed in Sec. V.

A. Axial dispersion relation—basic definitions

Consider a plane monochromatic wave obliquely incident
on a periodic semi-infinite stack, as shown in Fig. 12. Due to
the boundary conditions �4�, the incident, reflected, and
transmitted waves should be assigned the same pair of tan-
gential components kx ,ky of the respective wave vectors,

�k�I�x = �k�R�x = �k�T�x, �k�I�y = �k�R�y = �k�T�y , �41�

while the axial �normal� components kz are all different. For
the incident and reflected waves we have simply

�k�I�z = − �k�R�z = ��2c2 − kx
2 − ky

2. �42�

Let us turn to the transmitted wave. The transmitted wave
is usually a composition of two Bloch eigenmodes with the
same k��= �kx ,ky� from �41�, but different kz and different

polarizations. For given k�� and �, the value of kz is obtained
by solving the time-harmonic Maxwell equations �52� in the
periodic medium. The so-obtained correspondence between
the wave number kz and the frequency � at fixed k�� is re-
ferred to as the axial or normal dispersion relation. Real kz
correspond to propagating �traveling� Bloch modes, while
complex kz correspond to evanescent modes, decaying with
the distance z from the surface. Unlike kx and ky, the Bloch
wave number kz is defined up to a multiple of 2� /L.

Similarly to the case of normal propagation, the expres-
sion �40� defines stationary points of the axial dispersion
relation. The definition �40� is a generalization of �8� to the
case of oblique propagation. Different kinds of axial station-
ary points are defined as follows.

�i� A regular band edge of axial dispersion relation,

��

�kz
= 0,

�2�

�kz
2 � 0. �43�

�ii� A stationary inflection point of axial dispersion
relation,

��

�kz
= 0,

�2�

�kz
2 = 0,

�3�

�kz
3 � 0. �44�

�iii� A degenerate band edge of axial dispersion relation,

��

�kz
= 0,

�2�

�kz
2 = 0,

�3�

�kz
3 = 0,

�4�

�kz
4 � 0. �45�

The above definitions are analogous to those in �11�, �1�,
and �2�, related to the case of normal propagation. We still
can refer to the band diagrams in Fig. 2, where the quantity
k is now understood as the normal component kz of the Bloch
wave number at fixed k��.

B. Grazing mode solutions

All basic features of axially frozen mode regime at ob-
lique incidence are virtually the same as in the case of nor-
mal propagation. In particular, all the expressions �20�
though �39� of the preceding section describing the structure
and composition of the transmitted field �T�z� remain un-
changed. This close similarity holds both for the frozen mode
regime at a stationary inflection point �44� and at a degener-
ate band edge �45�. In either case, Figs. 3 and 4 give an
adequate idea of the frozen mode profile. Still, there is one
essential qualitative difference. Namely, in the case of axially
frozen mode we must remember that the tangential compo-
nent of the group velocity is not zero, even if the normal
component �40� vanishes. This means that the axially frozen
mode is in fact an abnormal grazing mode with purely tan-
gential energy flux, greatly enhanced amplitude, and a very
unusual profile, similar to that shown in Figs. 3 and 4. The
steady-state tangential energy flux of the transmitted wave is

S� = WT�z�u�, �46�

where the tangential component u� of the group velocity
remains large in the vicinity of axially frozen mode regime.
Therefore, the tangential energy flux S� also grows dramati-

FIG. 12. �Color online� Scattering problem for a plane wave
obliquely incident on a semi-infinite periodic layered medium. The
arrows schematically shows the Pointing vectors of the incident,
reflected and transmitted waves. The amplitude of the incident wave
is unity.
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cally, as the frequency approaches the respective critical
point �44� or �45�. This situation is illustrated in Fig. 13.

Note that the purely tangential energy flux in the transmit-
ted wave in Fig. 13 does not mean that this grazing mode can
be classified as a surface wave. Indeed, a surface wave is
supposed to decay with the distance from the interface in
either direction, which is not the case here. The possibility of
abnormal surface waves associated with a degenerate band
edge of axial dispersion relation will be addressed in the next
section.

C. Subsurface waves in the vicinity of degenerate band edge
of axial dispersion relation

So far in this section we have tacitly assumed that

kx
2 + ky

2 � �2c2. �47�

The inequality �47� implies that the z component �42� of the
wave vector of the incident wave is real. This is a natural
assumption when considering the problem of a plane wave
incident on a semi-infinite photonic crystal.

Consider now the opposite case where

kx
2 + ky

2 � �2c2. �48�

In this situation, there is no plane propagating waves in
vacuum matching the boundary conditions �41�. Still, if the
frequency � lies inside a band gap for a given k��, there can
be a solution for �T corresponding to a surface wave �see,
for example, Ref. �15� and references therein�. Generally,
such a solution is a superposition �21� of two evanescent
modes.

Consider now a surface wave at frequency located inside
a photonic band gap and close to a degenerate band edge
�45� of the axial dispersion relation for a given k��. The
Bloch composition of the field inside the periodic medium is

�T�z� = �ev1�z� + �ev2�z�, where � � �d, z � 0.

�49�

As frequency � approaches �d, the column vectors �ev1 and
�ev2 in �49� become nearly parallel to each other �see �37�
and comments therein�. Together, they can form a surface

wave with the profile similar to that of the frozen mode
shown in Fig. 11�a�. Although formally, it would still be a
surface wave, its profile is highly unusual. Namely, the field
amplitude inside the periodic medium sharply increases with
the distance z from the surface, reaches its maximum at a
certain distance Z defined in �33�, and only after that it be-
gins a slow decay. Since the field amplitude reaches its maxi-
mum only at a distance from the surface, and the respective
maximum value can exceed the field amplitude at the inter-
face by several orders of magnitude, such a wave can be
referred to as a subsurface wave.

IV. FLOQUET MODES AT STATIONARY POINTS
OF DISPERSION RELATION

Whether or not a given photonic crystal can support the
frozen mode regime is determined by its �axial� electromag-
netic dispersion relation. Specifically, if the dispersion rela-
tion develops a stationary inflection point or a degenerate
band edge, then one can always expect the frozen mode re-
gime in the vicinity of the respective frequency. Restricting
ourselves to periodic layered structures, we can link the sym-
metry of the periodic array to the possibility of the existence
of the proper stationary point of the dispersion relation.

Section IV A starts with some basic definitions and nota-
tions of electrodynamics of stratified media involving bire-
fringent layers. We briefly describe the formalism of 4�4
transfer matrix, generalized to the case of oblique wave
propagation. Different modifications of this approach have
been used in electrodynamics of stratified media for at least
two decades �see, for example, Ref. �16� and references
therein�. Wherever possible, we use exactly the same nota-
tions and terminology as in Refs. �9,10�.

In Sec. IV B we establish the relation between the sym-
metry of the periodic layered array and the possibility of the
existence of a degenerate band edge in the respective disper-
sion relation. The emphasis is on the case of oblique propa-
gation, where the symmetry restrictions on the periodic array
are much less severe. As a consequence, the axial frozen
mode regime at oblique incidence can occur in periodic
structures that are too simple to support the frozen mode
regime at normal incidence. Examples of the periodic lay-
ered structures supporting the �axial� dispersion relation with
a degenerate band edge are considered in the next section.

Similar problem for the case of a stationary inflection
point was addressed in Refs. �10,11�. Note that the condi-
tions for the existence of a stationary inflection point and a
degenerate band edge are mutually exclusive.

A. Time-harmonic Maxwell equations in periodic
layered media

Our analysis is based on time-harmonic Maxwell equa-
tions

�� � E� �x,y,z� = i
�

c
B� �x,y,z�, �� � H� �x,y,z� = − i

�

c
D� �x,y,z� ,

�50�

with linear constitutive relations

FIG. 13. �Color online� The case of oblique incidence, where the
transmitted wave is a grazing mode with tangential energy flux and
a frozen mode profile.
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D� �x,y,z� = 	̂�z�E� �x,y,z�, B� �x,y,z� = �̂�z�H� �x,y,z� .

�51�

In layered media, the material tensors 	̂ and �̂ in �51� depend
on a single Cartesian coordinate z. Using �51�, the Eqs. �50�
can be recast as follows:

�� � E� �x,y,z� = i
�

c
�̂�z�H� �x,y,z� , �52�

�� � H� �x,y,z� = − i
�

c
	̂�z�E� �x,y,z� .

Let us turn to the scattering problem of Fig. 12. Given the
boundary conditions �41�, the field dependence in �52� on the
transverse coordinates x and y can be accounted for by the
following substitution:

E� �r�� = ei�kxx+kyy�E��z�, H� �r�� = ei�kxx+kyy�H� �z� , �53�

which also allows to separate the tangential field components
into a closed system of four linear differential equations,

�z��z� = i
�

c
M�z���z� . �54�

��z� in �54� is a vector column,

��z� = �
Ex�z�

Ey�z�

Hx�z�

Hy�z�
� . �55�

The normal field components Ez�z� and Hz�z� can be ex-
pressed in terms of ��z�. In the particular case of k�  z, �55�
turns into �3�.

The system �54� is referred to as the reduced Maxwell
equations. It is relevant only if the time-harmonic electro-
magnetic field can be assigned a certain value of k��

= �kx ,ky�, which is the case here due to the boundary condi-
tions �41�. The 4�4 matrix M�z� in �54� is referred to as the
�reduced� Maxwell operator. Note that due to the substitution
�53�, the Maxwell operator M�z� depends not only on the
physical parameters of the periodic structure, but also on the
tangential components k��= �kx ,ky� of the wave vector. The
explicit expression for M�z� for the case of oblique propaga-
tion in stratified media composed of birefringent layers is
rather cumbersome. It can be found, for example, in Ref.
�10�, along with extensive discussion of its analytical prop-
erties.

B. The transfer matrix formalism

The Cauchy problem

�

�z
��z� = i

�

c
M�z���z�, ��z0� = �0 �56�

for the reduced Maxwell equation �54� has a unique solution

��z� = T�z,z0���z0� . �57�

The 4�4 matrix T�z ,z0� is referred to as the transfer matrix.
It relates the values of time-harmonic electromagnetic field
��z� at any two points z0 and z of the stratified medium. The
transfer matrix of a stack of layers is defined as

TS = T�D,0� ,

where z=0 and z=D are the stack boundaries. The transfer
matrix of an arbitrary stack is a sequential product of the
transfer matrices Tm of the constitutive layers

TS = �
m

Tm. �58�

If the individual layers m are uniform, the corresponding
single-layer transfer matrices Tm can be explicitly expressed
in terms of the respective Maxwell operators Mm,

Tm = exp�iDmMm� , �59�

where Dm is the thickness of the mth layer. The explicit
expression for the Maxwell operator Mm of an arbitrary uni-
form anisotropic layer can be found, for example, in Ref.
�10�. Therefore, Eq. �58� together with �59� provide an ex-
plicit analytical expression for the transfer matrix TS of an
arbitrary stack of uniform dielectric layers with or without
anisotropy, for an arbitrary �oblique or normal� direction of
propagation.

1. Transfer matrix in periodic layered media

In a periodic layered medium, the 4�4 matrix M�z� in
�54� is a periodic functions of z,

M�z + L� = M�z� .

Bloch solutions �k�z� of the reduced Maxwell equation �54�
with the periodic M�z� are defined as

�k�z + L� = eikL�k�z� . �60�

In the case of oblique propagation, the quantity k in �60�
denotes the z component of the Bloch wave vector.

Introducing the transfer matrix of a unit cell L,

TL = T�L,0� , �61�

we have from �57�, �60�, and �61�,

TL�k�0� = eikL�k�0� . �62�

Thus, the four eigenvectors,

�i�0�, i = 1,2,3,4 �63�

of the transfer matrix TL of a unit cell are uniquely related to
the Bloch solutions �k�z� of the reduced Maxwell equation
�54�. The respective four eigenvalues

Xi = eikiL, i = 1,2,3,4 �64�

of TL are the roots of the characteristic polynomial

det�TL − XI� . �65�

Each of the four eigenvectors �63� corresponds to either
propagating or evanescent Bloch wave, depending on
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whether or not the respective Bloch wave number ki from
�64� is real. Further in this section we will see that the rela-
tion �63� does not apply at stationary points of the �axial�
dispersion relation. This important exception is directly re-
lated to the very nature of the frozen mode regime.

The explicit expressions for the 4�4 transfer matrix �61�,
along with the detailed description of its analytical properties
can be found, for example, in Refs. �10,13�.

2. Transfer matrix at stationary points of dispersion relation

Although at any given frequency �, the reduced Maxwell
equation �54� has exactly four linearly independent solutions,
it does not imply that all four of them are Bloch waves as
defined in �60�. Specifically, at frequencies of stationary
points �43� and �44�, or �45� where the axial component of
the group velocity of some of the propagating modes van-
ishes, some of the four solutions can be algebraically diverg-
ing with z and, therefore, cannot be classified as Bloch
waves. For example, at frequency �d of a degenerate photo-
nic band edge, the four solutions of Eq. �54� include a propa-
gating Bloch mode with zero group velocity and three Flo-
quet eigenmodes diverging as z, z2, and z3, respectively �see
the details in Refs. �14,13��. Some of these eigenmodes are
essential for understanding the frozen mode regime.

Consider such non-Bloch solutions in terms of the transfer
matrix TL of a unit cell. Although the matrix �61� is invert-
ible, it is neither Hermitian, nor unitary and, therefore, may
not be diagonalizable. Specifically, if the frequency ap-
proaches one of the stationary points �43� and �44�, or �45�,
some of the four eigenvectors �k�0� in �62� become nearly
parallel to each other. Eventually, as � reaches the stationary
point value, the number of linearly independent eigenvectors
�k�0� becomes smaller than four, and the relation �63� does
not apply at this particular point. The number of linearly
independent eigenvectors of the transfer matrix is directly
linked to its canonical Jordan form.

At a general frequency different from that of any station-
ary point of the �axial� dispersion relation, the transfer matrix
TL is diagonalizable, and its canonical Jordan form is trivial

T̄L��� = �
eik1 0 0 0

0 eik2 0 0

0 0 eik3 0

0 0 0 eik4
� . �66�

This matrix has four linearly independent eigenvectors �63�
corresponding to four Bloch eigenmodes, each of which is
either propagating, or evanescent. The four respective values
of the wave number k are determined by �64� and �65�.

At frequency �d of a degenerate band edge, the canonical
Jordan form of the transfer matrix TL becomes

T̄L��d� = �
eikd 1 0 0

0 eikd 1 0

0 0 eikd 1

0 0 0 eikd

� , �67�

where kd is 0 or � /L. This matrix has a single eigenvector

�
eikd 1 0 0

0 eikd 1 0

0 0 eikd 1

0 0 0 eikd

��
1

0

0

0
� = eikd�

1

0

0

0
� ,

associated with one propagating Bloch mode with zero group
velocity, and three non-Bloch eigenmodes diverging as z, z2,
and z3, respectively. If the frequency � deviates from that of
the stationary point, the transfer matrix TL becomes diago-
nalizable with the canonical Jordan form �66�. The perturba-
tion theory relating the non-Bloch eigenmodes at the fre-
quency of a degenerate band edge to the Bloch eigenmodes
in the vicinity of this point is presented in Ref. �13�.

The other possibilities include a regular band edge �43�
and a stationary inflection point �44�. Those cases are dis-
cussed in Refs. �10,14,13�.

V. PERIODIC LAYERED STRUCTURES WITH
DEGENERATE BAND EDGE OF AXIAL DISPERSION

RELATION

Not any periodic stack can have electromagnetic disper-
sion relation with a degenerate band edge �45�. One funda-
mental restriction stems from the fact that at the frequency
�d of a degenerate band edge, the transfer matrix TL must
have the canonical form �67�. Such a matrix cannot be re-
duced to a block-diagonal form, let alone diagonalized.
Therefore, a necessary condition for the existence of a de-
generate band edge is that the symmetry of the transfer ma-
trix TL does not impose its reducibility to a block-diagonal
form. The above condition does not imply that the transfer
matrix TL must not be reducible to a block-diagonal form at
any frequency �. Indeed, at a general frequency �, the ma-
trix TL is always reducible and even diagonalizable. The
strength of the symmetry imposed reducibility, though, is that
it leaves no room for exceptions, such as the frequency �d of
degenerate band edge, where the transfer matrix TL must not
be reducible to a block-diagonal form. Therefore, in the case
of symmetry imposed reducibility of the transfer matrix, the
very existence of degenerate band edge �45� is ruled out.

At this point we would like to emphasize the important
difference between the cases of normal and oblique propaga-
tion. In the case of normal propagation, the symmetry of the
Maxwell operator M�z� in �54� and the transfer matrix TL

simply reflects the symmetry of the periodic layered array.
By contrast, in the case of oblique propagation, the substitu-
tion �53� lowers the symmetry of the matrices M�z� and TL

and makes it dependent not only on the periodic structure
itself, but also on the orientation of k��= �kx ,ky� in the x-y
plane. Lower symmetry of the “oblique” transfer matrix TL
may remove its symmetry-imposed reducibility to a block-
diagonal form, even if at normal incident such a reducibility
was imposed by the symmetry group of the periodic struc-
ture. In other words, even if a certain periodic layered struc-
ture cannot support a degenerate band edge at normal propa-
gation, it may develop such a stationary point at oblique
propagation. In this respect, the situation with degenerate
band edge is reminiscent of that of a stationary inflection
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point, where the cases of normal and oblique propagation are
also essentially different from each other �9,10�. Observe,
though, that in periodic layered structures, the possibilities of
a stationary inflection point and a degenerate band edge are
mutually exclusive.

Further in this section we consider specific examples of
periodic layered arrays supporting a degenerate band edge
and the related frozen mode regime. We start with the par-
ticular case of normal propagation, requiring more complex
periodic structures.

A. Degenerate band edge at normal propagation

The simplest periodic layered structure capable of sup-
porting a degenerate band edge at normal propagation is
shown in Fig. 6. A unit cell L contains one isotropic B layer
and two misaligned anisotropic layers A1 and A2 with in-
plane anisotropy. The isotropic layers have the thickness B
and the dielectric permittivity,

	̂B = �	B 0 0

0 	B 0

0 0 	B
� . �68�

The dielectric permittivity tensors 	̂A in each anisotropic A
layer has the form

	̂A��� = �	A + � cos 2� � sin 2� 0

� sin 2� 	A − � cos 2� 0

0 0 	3
� , �69�

where the parameter � characterizes the magnitude of in-
plane anisotropy and the angle � determines the orientation
of the anisotropy axes in the x-y plane. All the A layers have
the same thickness A and the same magnitude � of in-plane
anisotropy. The only difference between the adjacent aniso-
tropic layers A1 and A2 in Fig. 6 is their orientation �.

An important characteristic of the periodic structure in
Fig. 6 is the misalignment angle

� = �1 − �2 �70�

between the layers A1 and A2. This angle determines the
symmetry of the periodic array and, eventually, the kind of
k-� diagram it can display. Figure 14 illustrates the relation
between the misalignment angle � and the symmetry of the
respective k-� diagram. Generally, there are three possibili-
ties, reflected in Table I.

In the case �=0, all anisotropic layers have aligned in-
plane anisotropy. The term “aligned” means that one can
choose the directions of the in-plane Cartesian axes x and y
so that the permittivity tensors in all layers are diagonalized
simultaneously. In this setting, the Maxwell equations for the
electromagnetic waves with x and the y polarizations propa-
gating along the z axis are uncoupled, implying that the re-
spective transfer matrix can be reduced to the block-diagonal
form

T̄L = �
T11 T12 0 0

T21 T22 0 0

0 0 T33 T34

0 0 T43 T44

� . �71�

The two blocks in �71� correspond to the x and y polarization
of light. The fourth degree characteristic polynomial �65� of
the block-diagonal matrix �71� factorizes into the product

F4�X� = Fx�X�Fy�X� , �72�

where Fx�X� and Fy�X� are independent second degree poly-
nomials related to electromagnetic waves with the x and the
y polarizations, respectively, propagating along the z direc-
tion. The k-� diagram for this case is shown in Fig. 14�a�,
where each spectral curve relates to a specific linear polar-
ization of light. In this case, the symmetry imposed reduc-
ibility of the matrix TL to a block-diagonal form �71� rules
out the existence of a degenerate band edge.

In the case �=� /2, the anisotropy axes in the adjacent
layers A1 and A2 are perpendicular to each other. The point
symmetry group of the periodic array is now D2d, which is a
tetragonal symmetry class. The tetragonal symmetry results
in polarization degeneracy, implying that the respective
transfer matrix can be reduced to the following block-
diagonal form:

T̄L = �
T11 T12 0 0

T21 T22 0 0

0 0 T11 T12

0 0 T21 T22

� . �73�

The two identical blocks in �73� correspond to either polar-
ization of light. The fourth degree characteristic polynomial
�65� of the block-diagonal matrix �73� factorizes into the
product

FIG. 14. �Color online�. Dispersion relation ��k� of the periodic
stack in Fig. 6 for three different values of the misalignment angle
�. In the cases �=0 �no misalignment� and �=� /2, none of the
spectral branches can develop a degenerate band edge �DBE�.
While in the case �c� of �=� /4, one of the spectral branches de-
velops a DBE.
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F4�X� = F2�X�F2�X� , �74�

where F2�X� is a second degree polynomial related to elec-
tromagnetic waves with either polarization propagating
along the z direction. The k-� diagram for this case is shown
in Fig. 14�b�, where each spectral branch is doubly degener-
ate with respect to polarization. In this case, the symmetry
imposed reducibility of the matrix TL to a block-diagonal
form �73� also rules out the existence of a degenerate band
edge.

Finally, in the case ��0, � /2, the periodic stack in Fig.
6 has a chiral point symmetry described as D2. There is no
symmetry prohibition of a degenerate band edge in this case,
because the Bloch modes with different polarizations now
have the same symmetry and, therefore, are coupled. In this
case, one can adjust the misalignment angle � and/or the
relative layer thickness

b = B/L = B/�2A + B� , �75�

so that a given spectral branch develops a degenerate band
edge. The respective value of the wave number is either k
=0, or k=� /L.

In the numerical example in Fig. 15 we show four k-�
diagrams of the periodic structure in Fig. 6 corresponding to
four different values of the ratio b in �75�. In all cases, the
misalignment angle � is equal to � /4. The k-� diagrams in
Figs. 15�a� and 15�b� show a degenerate band edge in the
respective spectral branches. The k-� diagrams in Figs. 14�c�
and 15�b� are identical.

If the isotropic B layers are completely removed from the
periodic structure in Fig. 6, the point symmetry group of the
periodic array rises from D2 to D2h, acquiring a glide mirror
plane m. The two different linear polarizations now become
uncoupled regardless of the misalignment angle �, while the
transfer matrix TL of the stack displays a symmetry imposed
reducibility to a block-diagonal form �71�. The respective
k-� diagram is shown in Fig. 15�d�.

B. Degenerate band edge at oblique propagation

Consider now a periodic structure with just two layers A
and B in a unit cell, as shown in Fig. 8. The dielectric ma-
terial of the A layer has an in-plane anisotropy �69� while the
B layer is isotropic. For specificity, we can set

	̂A = �	A + � 0 0

0 	A − � 0

0 0 	3
�, 	̂B = �	B 0 0

0 	B 0

0 0 	B
� . �76�

Note that the structure in Fig. 6 reduces to that in Fig. 8 in
the particular case of �=0. Indeed, if the misalignment angle
between A1 and A2 in Fig. 6 is zero, these two anisotropic
layers together make a single A layer with double thickness.
Therefore, at normal propagation, the k-� diagram of the
periodic array in Fig. 8 is similar to that of the periodic
structure in Fig. 6 with �=0. The latter is shown in Fig.
14�a�. There is no possibility of a degenerate band edge in
this case.

The situation remains unchanged if the direction of propa-
gation deviates from the z axis, but is confined to either the
x-z, or the y-z plane. In either case, the respective plane is
the mirror plane of the transfer matrix, ensuring that the x
and y polarizations remain uncoupled. Uncoupled polariza-
tions imply that the transfer matrix TL is reducible to the
block-diagonal form �71� at all frequencies. Again, there is
no possibility of a degenerate band edge in this case either.

TABLE I. Point symmetry of the periodic layered structure in Fig. 6 for different values of the misalign-
ment angle between adjacent anisotropic layers.

Value of � Symmetry class Spectral properties Example

�=0 mmm�D2h x and y polarizations are separated Fig. 14�a�
�=� /2 4̄mm�D2d

polarization degeneracy Fig. 14�b�

��0,� /2 222�D2 no polarization degeneracy/separation Fig. 14�c�

FIG. 15. �Color online� k-� diagram of the periodic stack in Fig.
6 for four different values of the B-layer thickness. �a� B /L
=0.711 44, in this case the upper edge of the frequency gap devel-
ops a DBE. �b� B /L=0.374 43, in this case the lower edge of the
frequency gap develops a DBE. �c� B /L=0.1. �d� B /L=0, in this
case the intersecting dispersion curves correspond to the Bloch
waves with different symmetries—the respective modes are
decoupled.
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The situation changes only in the case of oblique propa-
gation with kx, ky �0. The Maxwell equations �54� for dif-
ferent light polarizations are not decoupled anymore, and the
respective transfer matrix cannot be automatically reduced to
a block-diagonal form at all frequencies. As a consequence,
at certain direction of propagation, some spectral branches
can develop a degenerate band edge, as shown in the ex-
ample in Fig. 16. In fact, for any given frequency �d within
a certain frequency range, one can find a specific direction
k��= �kx ,ky� for which the degenerate band edge �45� occurs
at the chosen frequency �d. In the example in Fig. 16, we
simply set kx=ky and A=B. In such a case, the degenerate
band edge frequency and the respective value of kx=ky are
predetermined by the physical parameters of the periodic ar-
ray.

C. Values of physical parameters used in numerical
simulations

In all numerical simulations related to nonmagnetic lay-
ered structures in Figs. 6 and 8 we use the following values
of material parameters in �68�, �69�, and �76�,

	A = 11.05, � = 7.44, 	3 = 18.49, 	B = 1. �77�

The relative thickness of the A and B layers in Fig. 6, as well
as the value of the misalignment angle �70� can be different
in different cases.

Frozen mode profiles presented in Figs. 4, 5, 10, and 11
are computed for the same periodic stack in Fig. 6 with the
misalignment angle �=� /4 and the ratio B /L=0.374 43.
The respective k-� diagram is shown in Figs. 14�c� and
15�b�. In all cases, the incident wave has unity amplitude and

linear polarization with E�  y. Change in polarization results

in the change of the frozen mode amplitude, but it only
slightly affects the Bloch composition of the frozen mode
and its dependence on the distance z from the surface of
incidence.

In a single case related to a nonreciprocal periodic layered
structure with a stationary inflection point �Figs. 3 and 9� we
use the following numerical values of the electric permittiv-
ity and magnetic permeability tensors of the anisotropic A
layers and magnetic B layers

	̂A = �17.1 0 0

0 2.3 0

0 0 2.3
�, �̂A = �1 0 0

0 1 0

0 0 1
� , �78�

	̂B = �14.1 0 0

0 14.1 0

0 0 14.1
�, �̂B = � 29.0 17i 0

− 17i 29.0 0

0 0 14.1
� .

�79�

The misalignment angle � in this case is set to be � /4. The
respective value of the stationary inflection point frequency
�0 at normal propagation is 0.7515�c /L.

In all plots of field distribution inside periodic media at
z�0 we, in fact, plotted the following physical quantity:

����z��2� = �E� �z� · E� *�z� + H� �z� · H� *�z��L, �80�

which is the squared field amplitude averaged over a local
unit cell. The actual function ���z��2, as well as the electro-
magnetic energy density distribution W�z�, are strongly os-
cillating functions of the coordinate z, with the period of
oscillations coinciding with the unit cell length L. Given the
relation W� ���z��2, the quantity �80� can also be qualita-
tively interpreted as the smoothed energy density distribu-
tion, with the correction coefficient of the order of unity.

In all plots, the distance z, the wave number k, and the
frequency � are expressed in units of L, L−1, and cL−1, re-
spectively.

VI. CONCLUSION

In this paper we outlined several different manifestations
of the frozen mode regime in photonic crystals. Although all
our numerical examples relate to periodic layered structures,
in fact, the frozen mode regime is a universal wave phenom-
enon. Indeed, we can talk about different kinds of wave ex-
citations in low-loss periodic media. But as soon as the re-
spective Bloch dispersion relation displays a singularity like
a stationary inflection point �44� or a degenerate band edge
�45�, we have every reason to expect a very similar behavior
involving the frozen mode regime. In other words, the pos-
sibility of the frozen mode regime is determined by some
fundamental spectral properties of the periodic structure,
rather than by the physical nature of the linear waves. If a
periodic array is relatively simple—for instance, a stratified
medium with one dimensional periodicity—its frequency
spectrum may prove to be too simple to support the proper
spectral singularity. The more complex the periodic structure

FIG. 16. �Color online� Axial dispersion relation ��kz� of the
two-layered periodic stack in Fig. 8. The tangential components
kx ,ky of the wave vector are fixed at kx=ky =1.9403. The fifth spec-
tral branch develops a degenerate band edge �45� at kz=� /L.
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is, the more likely it will be capable of supporting such a
phenomenon. For instance, in the case of layered arrays we
need birefringent layers and, at normal propagation, at least
three layers in a unit cell.

Another important question is how robust the frozen
mode regime is. For instance, what happens if we introduce
a small absorption or structural imperfections. Of course,
these factors suppress the frozen mode amplitude. But in this
respect, the frozen mode regime is no different from any
other coherent or resonance effects in periodic structures.
This problem can be addressed at any particular frequency
range by appropriate choice of the constitutive materials.

Another fundamental restriction relates to the size of the
periodic structure. In this paper we assumed that the periodic
array occupies the entire half-space z�0. A good insight on
what happens to the frozen mode in a finite periodic array is
given by Fig. 5. These graphs demonstrate that the frozen
mode regime in a finite periodic array can be as robust as that

in an hypothetical semi-infinite structure. The optimal num-
ber of layers depends on such factors as the absorption char-
acteristics of the constitutive materials, the geometrical im-
perfections of the periodic array, the desired degree of field
enhancement in the frozen mode, etc. On the other hand, in
finite �bounded� photonic crystals, some resonance phenom-
ena can arise, such as transmission band edge resonances
�2,3,14�. These effects, though, are qualitatively different
from the frozen mode regime. The transmission band edge
resonance in the vicinity of a degenerate band edge was stud-
ied in Ref. �14�.
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